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DYNAMIC REPAIR ALLOCATION FOR A K OUT OF N SYSTEM

MAINTAINED BY DISTINGUISRABLE REPAIRMEN.

by

Michael N. latehakis and Cotie elolidakis
Technical University of Crete Technical University of Crete

and Columbia University

ABSTRACT

We consider a K out of N system maintained by R repairmen,
where the lifetime of the ith component is an exponentially distributed
random variable with parameter gi . Repairmen are distinguishable, and
the time it takes the rth repairman to repair a failed component is an
exponentially distributed random variable with parameter Xr . Repaired
components are as good as new and preemptions are allowed. We show
that the policy which assigns the faster repairmen to the most reliable
components is optimal with respect to several optimality criteria.

The approach we take in establishing stochastic optimality with
respect to the number of functioning components is of wide applicability
to different classes of stochastic optimization problems.

1. Introduction. Consider a system that consists of N components. The

system is functioning when at least K out of its N components are

operating. Components may fail, their lifetimes being exponentially distributed

random variables. Failures occur independently and a component may fail

even when the system is not functioning. The rate of failure of component i

is denoted by ti , i n 1,...,N . The system is maintained by R repairmen.

At most one repairman can be assigned to a failed component and a repairman

may switch from one failed component to another instantaneously. The time I
0

required by the rth repairman to complete the repair of any failed component 1 0

is considered to be an exponentially distributed random variable with

*Tbiu research was partially supported by the NSF under Grant NO. y Codes
1CS-86-07671 and the AFO8R under contract 87-0072.
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parameter ,r , r = 1,...,R . Repaired components are as good as new.

We show that the policy under which the fastest repairman (Le., the one

with the largest repair rate) is assigned to the most reliable failed component

(i.e., the one with the smallest failure rate) the next to the fastest repairman

is assigned to the next to the most reliable failed component, etc. (FR-MRC

policy), possesses the following optimality properties.

It maximizes stochastically the number of working components of the system at

any time instant t . Hence, it maximizes both the expected discounted system

operation time for all discount rates A , A 1 0 and the average system

operation time. Furthermore, it maximizes stochastically the time the system

spends in functioning states before a failure occurs, and it minimizes

stochastically the time the system is down before it starts operating again.

This problem has been studied for the case in which R 1 1 in Derman

Lieberman and Ross (1980) , where it is shown that the pertinent policy

stochastically maximizes the operation time of the system during any time

interval. The case in which R = I , failure and repair times are

exponentially distributed and the repair rates depend on the components has

been considered in Katehakis and Derman (1984) with respect to the average

system operation time, and in Katehakis and Melolidakis (1987), with respect to

the stochastic optimality of the system nonfunctioning time. See also Smith

(1978).

2. Problem fornation. Under the assumptions made, at any time the status

of all components is given by a vector x =(xl,...,xN) with xi = 1 or 0

according to whether the ith component is functioning or failed. Thus, the

set of all possible states is S = (0 ,1)N . for any state x e S , we define

states (6k,X) =(Xl,...,Xk-V,'xk+l,...,I , 6t = 0, 1 , k = 1,..,N , and we

denote the sets of failed and functioning coonents by Co(x) and C1L(x)

2
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i.e., Co(x) = {i I xi = , C(x) {i I xi  1) respectively.

The cardinality of a set A is denoted by IAI . For notational simplicity we

define xv = I C,(x)l . Let S0 = (x : IxI K) denote the set of failed

states and S1 ={x : lxI 1 K) denote the set of functioning states of the

system.

We number the components according to their failure rates , ie.,

j A i if and only if Lj - Ii , and the repairmen reversely to their repair

rates, i.e., rA as if and only if hr & ks •

Let then q(x) be the qth failed component at state x and let aq(x)

be the order of q(x) . Let also )(x) = IR(x)q=l

The set of repairmen is denoted by R and I RI R . Let R(x) denote

the maximum number of components that can be under repair when the system

is in state x , i.e.,

R(x) = min (R, tCo(x)I)

Let W(x) be the set of all possible choices of components on which one

may decide to assign repairmen when the system is in state x , Le.,

W(x) B : B c Co(x) , IBI d R(x)

For B e W(x) , let A(Bz) be the set of possible choices of repairmen one

may decide to use If he chooses B , L.,

A(Bz) = ( C : C c R , ICI = IBI )

An assignment of repairmen C s A(B,z) to components B e W(x) is an

1-1 and onto mapping from B to C . Denote by f(B,C) the set of these

mappings and let A(x) represent the available actions at state z , Le.,

A(s) =( (B,C,#) : B c W(z), C a A(B,x), + e #(B,C) I

The problem of the stochastic mazimIzation of the number of functioning

components at any tise instant t can be formulated as a family of Markovian

decision problems in the following way.

3



Since the state space is finite we can use the device of uniformization

(see Lippman (1975) and references given there) which essentially means that

we can consider (dummy) transitions back to the same state at such a rate

that the sojourn times X1  X2, ... of the processes are independent

exponential random variables with a common rate v . The constant v can

be chosen as any number greater than or equal to the sum of the transition

rates. The sum Sn = X1 + X2 4-.+ Xn represents the time of the nth

transition of the system. Let nt = sup (n: Sn A t , i.e., nt is is the

record of the last transition that occured up to time t . Because of the

uniformisation, the distributions of Sn  and nt are independent of the

particular policy we follow. Given a policy V we define the random variable

Nw(t;x) , where NW(t;x) = 0,..., N , represents the number of working

components at time t if the state at time 0 was x . Let wo  denote the

FR-MRC policy.

Our aim is to show that

P 0(t;x) h k h P(Nw(t;x) h k ) for all policies w , 0 d k A N (1)

Let Nw(n;x) , n h 1 , be the number of working components after the nth

transition if the state at time 0 was x . Then, NW(t;x) = NW(nt;x) and

therefore, since

P(Nw(nt;x) b k )= =lP( Nw(;x) k )P( ntn) , 0 A k N.

it is sufficient to show that

P(NWo(n;x) h k ) P( Nw(n;x) k) for all policies v , all n & 1

After uniformigation, the relevant family of Markovian decision problems will be

the following.

4



For each n , n b , and for each k , 0 k A N consider the

problem '1 n,k which is specified by the following elements.

1. State space: the set {(x;m) : x e S , m = 0, l,.., n.

2. Action sets: the sets A(z;m) = A(x).

3. System dynamics: when the system is in state (x;m) and action

a = (B,C,+) e A(x) is chosen , the following transitions are possible

i) to state (lbx;u-1) , b c B , with probability 
v(b

ii) to state (01,x;x-1) , a s Cl(x) , with probability -,
V

iii) and to state (x;n-1) with probability v - X(x.a) - a(x) whereV

r(x,a) = Zbieb (bi) , ZSECl(x) La and v is any constant

greater than or equal to the sum of the transition rates.

iv) Reward structure

{ 1 if Ix & k and a = 0
r(x;a) 0 otherwise

It is easy to see that the objective function of (lln,k) represents the

probability P( Nf(n;x) & k ) , which is to be maximized.

Take n b 1, and fix k , 0 ' k A N . Let vw(x;n) denote the value of

a policy w in fInk and let v(x;n) denote the value of an optimal policy.

Then v(.;.) is the unique solution to the following system of functional

equations;

v(x;m+l) = !x) [ r(x) + (v - X(x,a) - ji(x)]v(x;n) +

+ ;. X+(b) v(l*(b) X;u) +S~. ~Lv(~~u 2

where a ,,...,n-

_m5
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In the next section we establish that the values of the FI-NRC policy

satisfy (2) and thus it is stochastically optimal with respect to the number of

functioning components in the system at any time instant t .

To show that the FR-NRC policy minimizes (maximizes) stochasticaly the

time the system spends in nonfunctioning (functioning) states we first need to

define the random variables Yif(x) , Zf(x) , where Yn(x) (respectively

Zw(x)) denotes the first passage time from a state x e SO to the set of

functioning states S1 (respectively from a state x e S 1 to the set of failed

states So ) under a policy w . Related to these two random variables are

the following two families of Markov decision processes:

The fmily (flu) , n h 1 , that corresponds to Yn(x) , is defined by:

1. State space :The set ( (x;m): x S , m = 0, 1,..., n.

2. Action sets : The sets A(x;m) = A(z).

3. System dynamics : (I) When the system is in state (x;m) , x F So

and action a = (B,C,+) e A(x) is chosen , the following transitions are

possible :

i) To state (lb,x;i-l) , b e B , with probability
v

ii) To state (0,x;a-1) , 9 e CI(x) , with probability 9_
V

iii) And to state (x;u-1) with probability V - v(x.a) - AW V where

V

X(x,a) = 1 bieb +(bi) , VW - ISSCl(x) go and v is any constant

greater than or equal to the sum of the transition rates.

(11) When the system is in state (x;m) , x e Sl and action a e A(x) is

chosen, then the next state is (x;m-1) with probability 1.

iv) Reward structure

6
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r 1 if x c Sl and = 0
0 otherwise

The family (n;) , n h 1 , that corresponds to Zw(x) , is defined by:

The Same state and action set. as in (11n) and a transition law described as

that of (in) , but with the places of So and S 1 reversed. Similarly, the

cost in (%) is defined as in (fin) , but with So in the place of S1 . The

objective function is to be maximized in (11n) and to be minimized in (%) .

Let ywd(x) C respectively Zwd(x) ] represent the number of transitions to

absorbtion from an initial state (x;n) in (11n) [ respectively (%r) ] . It is

easy to see that the objective function in (fin) ( respectively ([) ]

represents the P( ywd ' n ) C respectively P( Ziwd & n ) ]. To establish the

stochastic optimality of no for the first passage problem , i.e. that V n,

P( Y d  n ) p( yWd n) respectively P( Zwd n ) P( Zwd n),

it is necessary and sufficient to establish the optimality of To in (Tln) and

(6u) (see Katehakis-Melolidakis (1987)].

Remark. The approach to stochastic optimality using uniformization and

Markovian Decision Theory is applicable in more general situations.

3. Otinm lity Properties of the FR-MRC policy.

We first proceed to show that,

Theorem 1. The FR-URC policy stochastically maximizes the number of

functioning components in the system at any time instant t .

Proof. The proof is by establishing the optimality of nro in the following

recursive equations .

v(x;u+l) a2 ~x) 1 [ r(x) + [v - X(x,a) - g(x)]v(x;m) +

N xlglv(O8x;M)]

+ 1bfB l'(b) v(l9(b) x;") + 1x8= I

(3)u+l

7



1 if xI k and a = 0
r(x;m) 0 otherwise
So, we will show that:

v(x;m + 1) =1 [ r(x) + (v- (x) IL(x)]v(x;,) +
V

+ I R(x)q v(laq(x),X;N) + N xlPav(Oax;m) ]

(4)m+1

1 if uxIb k and m = 0
r(x;) I 0 otherwise

The proof is by induction on m

For a = 0 there are four cases.

Case 1: i,xi z k for i e Co(x). Then, whatever the action a

v(x;l) is independent of a . Hence, (4)l holds trivially.

Case 2: li,xI = k for i e Co(x). Then, certainly no maximizes (3 )l

among all possible policies # .

Case 3: lli,xI = k + 1 for i e Co(x). Then, v(x;l) is independent of the

particular policy employed.

Case 4: *li,xI I k + 1 for i s Co(x). Then, again any action will guarantee a

constant cost.

So, (4)l is true. Now assme (4) m  is true up to a included. To show that

it is true for a + 1 also, we need to establish the following leimas.

Lnme 1. For j A i, ij e Co(x), the following hold

a) v(lj,x;m) & v(li,x;n) (5)m

b) v(laq(1j,x),lJ,x;B) h v(lal(lt,x),li,x;u) (6)m

c) v(x;m) A v(lj,x;m) (7)m

d) V(laq(x),x;R) A v(laq(1j,x),lJ,X;B) (8)m,

8
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Proof. The pro of is by induction.

For a = 0 (5),(6),(7) and (8) are certainly true.

Assume they are true up to m - 1 included. We show that they are also

true for a . The proof involves the following steps:

a) ( Mm) and (5)R-1 and (6)w..l and (7)u-i ) implies (5)m

b) ( (5)m ) implies (6)m

c) ( ( 4 )m and (5)w-I and (7).-l and (8)m-i ) implies (7)m

d) ( (5)m and (7)z ) implies (8)m

More precisely:

a) (5)w-. implies that for i,j e CG(x), j A'i

IV X(lj,x) - gi - gL(x)][v(lj,X;W-l) - V(11 ,x;m--l)] b 0 -

IV - X(l 3 ,x) - I(x)Ifv(lj,x;mw-l) - v(li,x;m-l)] h

p icv(l33X;m-l) - v(x;m-l)] - Riz(V(li,x;ur-l) - v(x;m-l)] (9)

Since ILj d pi (7)W-1 and (9) imply that:

[v - X(13 ,x) - g(x)](v(lj,x;m-l) - V(12.x;mr-l)]

b ,j(v(lj,x;m-l) - v(x;uW-l)] - Igi(v(li,x;1r-l) - v(X;mk-l)]

which in turn,after observing that lxi = lyl -> R(x) = R(y) -> X(X) X= )

leads to:

IV - X(lj~x) - ILj - Pa(X)Iv(lj~x;3-1) + pLjv(x;m-l)] h

& (v - A(lj,x) Pi - g(x)]v(li~x;3-l) + Iiiv(x;R-l)I (10)

Also (6).-l implies that:

9



and (5 )m_I implies that

I-C L (x)gcv(Oljxx;m-l) ASCoX v(O,li x; Wl) (12)

By adding (10), (11) and (12) and using (4)m we conclude that (5)m  holds.

b) To show that (6)m is true, we have to consider cases.

Case 1: aq(ljx) e j, i.e., there are at least q non-functioning compo-

nents before the jth one. Then, j A i -> aq(li,x) = aq(lj,x) and (6)m

follows from (5).

Case 2: aq(lj,x) j, i.e., there are less than q non-functioning compo-

nents before the jth one. Then there are two subcases.

Subcwse 2a: j , aq(lj,x) A i . The jth position then counts for li,x

and hence aq(lix) & j. Therefore, repeated use of (5)m  gives :

v(laq(1j,x), 1j,x;m) & v(laq(lj,x) , laq(li,x),X;) h v(li, laq(li,x) ,x;)

which establishes (6)m .

Subcase 2b: j z i A aq(lj,x) . Then aq(lj,x) = aq(li,x) and the result

follows from (5)m again.

Hence (6), has been established.

c) To show (7)m we first observe that (7)2-1 implies that

[v - X(x) -(x)]v(x;=-l) A

A Iv - X(x) - ,j - I(x)]v(ljx;W-l) + Ijv(x;m-)) (13)

and that,

1aCC.(X)PSv(O#sx;-l) aJco(X)wpiv(Ojalj'x;M-1) (14)

We next consider two cases

10



Case 1: R(x) = R(lj,x), i.e., in both x and lj,x there are more non-

functioning components than available repairmen.

Then, (8).... leads to:

qR~l XZ(~aqxiX~--X q~ q VGl(lj'x)lj'x;m..l (15)

Adding together (13), (14), and (15) and using (4)m we get

v(x;z) A v(lj,x;m) , which establishes (7)m for this case.

Case 2: R(x) = R(lj,x) + 1, i.e., in lj~x there are more repairmen avai-

lable than failed components.

Again (7 )R-1. and (8)w-l lead to

IV - X(x) - Rj- i(x)]v(x;m-l) + R(lj~x) vlax)xw1+

+ I 8CCo(x)9jv(O'x;Wl)'

a IV - X(x) - Pj- IL(x)]v(lj,x;m-l) + I R(lj~x) k7lql,)l~~-)

+ I seo( )IgV(O8Ilj'x;ml) (16)

Since, in this case, X(x) = X(l3,x) + XR(x) , (16) may be rewritten as

[V - )(x) - I(x)]v(x;2-l) + I qljx xqV(lqx);l)+ R(vljxm)

+~ aqiEC;-1 +(x)Ixav(Oj~x;2) '

A Iv - (lj,x) - gj- Ii(x)]v(lj,x;m-l) + IRqlx

+ I8C()Pj(O' ljx;n-l) + gtjv(x;w-l) (17)

Now, since for this case R h C0(x) , aR(x)(x) is the largest in order

component in CO(x). Hence, j A aR(x)(x) which, using (5)m-l ,implies that



XR(x)v(laR(x) x;-1) A XR(X)V(lj,x;u-1) (18)

But then, using (18) in (17) to strengthen the inequality and using (4)m

we conclude that (7)m holds for this case also.

d) To show (8)m we distinguish two cases again.

Case J: aq(lj,x) z j. Then aq(lj,x) = aq(x) and (8)m follows from (7)n

Case 2: aq(lj,x) x j . Then aq(lj,x) is the next to the aq(x) failed

component, which implies that aq(x) & j. There are two subcases now:

Subcase 2a: aq(x) = j. Then, (8)n follows from (7).

Subcase 2b: aq(x) j. Then, using (5)m and (7)n we get:

V(laq(x),x;m) A v(laq(x),laq(lj,x) , x;m) A v(lj,laq(lj,x),X;)

which establishes (8)m

This finishes the proof of Lena 1. a

Lena 2. Among all possible actions that use the first R(x) repairmen, the

action determined by wo  is the best in the optimization of (3)n+1 .

Proof. It is sufficient to show that whenever r b s ( r,s representing

the order of repairmen) and j A i ( j,i representing the order of compo-

nents) then, it is better to assign j to r and i to s than vise versa.

The conclusion will then follow after a finite number of permutations of re-

pairmen.

Thus, it suffices to show that if A u (r) u (s} is the set of the R(x)

first repairmen , r A s , and if j A i then, for any assignment 4 using

all of them, we have:

12
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(v-Xr-tXs-I qXq.(x)]v(x;m) + krv(lj,X;N) + Xsv(li,x;m) + Iq6AXqv(l#.1(q),x;m)

+ I SGC.(X)IUv(OjiX;m) b

(v-xrxs.Zl fA"(X)]v(x;m) + Xrv(li,x;3) + Xsv(lj,x;m) + I )lAqv(l4-.l(q).x3R)

+ Z*C(X)IPv(O8OxmR) (19)

But,since Xr & X , (19) is equivalent to v(1j,x;z) h v(li,x;u) , which is

true by Lemma l(a). a

NOW assume that at state x repairmen get assignments sequentially. Then,

I-NRn 3. In the optimization problem (3)2+1 , at each state x we should

assign repairmen according to their rates, i.e., first assign the fastest,

then the next to the fastest, e.t.c.

Proof. Assum we have already assigned a set of A repairmen, A c R with

IAI 'R(x). Then we want to show that if r A a , r,s e BR\ A , then:

[v - r - ZqCAXq - P(X)]v(x;m) + Xrv(li,x3m) + Zq6Axqv(4l*(q)'xmA) +

+ I SeC,(X)IL~v( 0 3x;M) b

(v Xs - ZqeAXq - P(x)]v(x;m) + Xav(li,X;m) + ZqCA?q(l p-1q,X;A) +

+ #SC()Lv(OS'x;S) (20)

where i is the failed component to which we decide to assign the next re-

pairman and + is any policy.

Now, since Xs d Xr (20) is equivalent to: v(x;m) b v(li,x;u) which

is true ( Lemma 1(c) ).

13
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Lemn 4. In the optimization problem (3)m+l , at state x we should assign

no less than R(x) repairmen to failed components.

Proof. The proof is by induction on R(x) .Assume that, according to some

policy, we have assigned A repairmen, with IAI C R(x) . We show that it in

then better to assign one more. Take r R \ A . We want to show that,

( - Xr - ZqSA q - 9(x)]v(x;m) + krv(li,x;u) + XqCA~qv(l#_l(q),x;m) +

+ ZCCo(x)9lv(0Ox;R) 6

1 [v - ZqAXq - P(x)]v(x;m) + Z'qeAqv(ltl(q),X;m) + E~,C(x)av(Oe~x;m)

(21)

where i is any failed component that does not get assigned a repairmen from

A. But (21) is equivalent to v(x;m) A v(li,x;n) which is true (Lema l(c)).0

Lem (3), (4) and (5) are enough to complete the induction step in the

proof of Theorem 1. Indeed, in the optimization of (3)m+l at state x we

should use the first R(x) repairmen (lemma 3 and 4 combined) and among all

policies that use these first R(x) , wo  is the best (lemma 2). Hence, the

inductive step is complete and Theorem I has been proved.o

Corolary 1. The PU-C policy maximizes both the total expected

discounted operation time of the system and the availability of the system.

Proof. Notice that since the total discounted operation time of the system is

given by o e-t P(N,(t;x) a 1) dt and since the average operation time of

the system is given by im 1 fjT P(Nw(t;x) 6 1) dt, the stochastic optimality

of wo implies its optimality with respect to the other two criteria.

Throre . The FR-RC policy stochastically minimizes the time the system

spends in non-functioning states until it starts operating again. Moreover,

wo stochastically maximizes the operation time of the system untill failure.

14



Proof. According to the discussion in section 2 , it is sufficient to prove

the optimality of no for the two families (fln) and (% ) . Now, it is very

easy to check that all the arguments in the proof of Theorem 1 go through

for the (ln) problem also, establishing thus the optimality of Wo . The same

arguments work for (f1A) also, but with the sign of all numbered inequalities

reversed. a
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